幂是什么意思?
〈名〉
(形声。从巾,冥声。本义:盖东西用的巾)
同本义
大巾谓之幂。——《小尔雅·广诂》
幂人,掌共巾幂。——《周礼·天官·幂人》。注:“共巾,可以覆物。”
幂用锡若絺。——《仪礼·大射礼》。注:“幂,覆尊巾也。”
幂用疏布。——《仪礼·既夕礼》
簠有盖幂。——《仪礼·公食大夫礼》
又如:幂首(古代妇女障面的一种头巾);幂人(《周礼》官名。掌共巾幂);幂篱(古代少数民族的一种头巾)
数学名词。表示一个数自乘若干次的形式,如a自乘n次的幂为a n 。
如:立方是一个数的三次幂
云南少数民族计算布帛的单位
〈动〉
用布覆盖
祭祀,以疏布巾幂八尊。——《周礼·天官》
又如:幂历(分布覆被的样子;弥漫笼罩的样子)
遮;蒙
幂窗用纸。——白居易《庐山草堂记》
通“塓”。涂刷
葺墙幂室,房庑杂袭。——左思《魏都赋》
幂通俗的说就是我们通常所说的多少次方,比如平方叫二次幂,立方叫三次幂,幂的大小是整数,不能是分数和小数.
设a为某数,n为正整数,a的n次方表示为aⁿ,表示n个a连乘所得之结果,如2⁴=2×2×2×2=16。次方的定义还可以扩展到0次方和负数次方等等。
在电脑上输入数学公式时,因为不便于输入乘方,符号“^”也经常被用来表示次方。例如2的5次方通常被表示为2^5。
扩展资料:
次方有两种算法。
第一种是直接用乘法计算,例:3⁴=3×3×3×3=81
第二种则是用次方阶级下的数相乘,例:3⁴=9×9=81
(1) 任何不等于零的数的零次幂都等于1。
即 (a≠0)。
(2)任何不等于零的数的-p(p是正整数)次幂,等于这个数的p次幂的倒数。
即 (a≠0,p是正整数)。
(规定了零指数幂与负整数指数幂的意义,就把指数的概念从正整数推广到了整数。正整数指数幂的各种运算法则对整数指数幂都适用。)
幂(mì)形声。从巾,冥声。其广州话读音为:【mig6
觅】(来源:《广州音字典:普通话对照
修订版》第28页)
1)
本义:盖东西用的巾。【英语
cloth
cover】
大巾谓之幂。--《小尔雅·广诂》
幂人,掌共巾幂。--《周礼·天官·幂人》。注:“共巾,可以覆物。”
幂用锡若絺。--《仪礼·大射礼》。注:“幂,覆尊巾也。”
幂用疏布。--《仪礼·既夕礼》
簠有盖幂。--《仪礼·公食大夫礼》
又如:幂首(古代妇女障面的一种头巾);幂人(《周礼》官名。掌共巾幂);幂篱(古代少数民族的一种头巾)。
2)
覆盖;罩。动词。
祭祀,以疏布巾幂八尊,以画布巾幂六彝。--《周礼·天官·幂人》
青烟幂处,碧海飞金镜。--晁补之《洞仙歌》
3)
数学名词。又称乘方。表示一个数自乘若干次的形式,如a自乘n次的幂为a^n
,或称a^n为a的n次幂。【英语
power】a称为幂的底数,n称为幂的指数。在扩充的意义下,指数n也可以是分数、负数,也可以是任意实数或复数。
4)
云南少数民族计算布帛的单位
。
部首笔画
部首:冖
部外笔画:9
总笔画:12
五笔86:PJDH
五笔98:PJDH
仓颉:BAKB
笔顺编号:452511134252
四角号码:37227
Unicode:CJK
统一汉字
U+5E42
编辑本段数学术语
相关介绍
幂(power)指乘方运算的结果。n^m指将n自乘m次(根据六下课本该式意义为m个n相乘)。把n^m看作乘方的
结果,叫做n的m次幂。
数学中的“幂”,是“幂”这个字面意思的引申,“幂”原指盖东西布巾,数学中“幂”是乘方的结果,而乘方的表示是通过在一个数字上加上标的形式来实现的,故这就像在一个数上“盖上了一头巾”,在现实中盖头巾又有升级的意思,所以把乘方叫做幂正好契合了数学中指数级数快速增长含义,形式上也很契合,所以叫做幂。
圆幂定理中的“幂”,则是跟圆幂的定义有关,圆幂是指平面上任意一点到圆心的距离与半径的平方差,其结果,当点在圆外时,就是切线的长度的平方,而切线的平方本身就是个“幂”,所以为了简洁,将与圆有关的切线定理、割线定理、相交弦定理统称为“圆幂定理”。
其中,n称为底数,m称为指数(写成上标)。当不能用上标时,例如在编程语言或电子邮件中,通常写成n^m或n**m,亦可以用低德纳箭号表示法,写成n↑m,读作“n的m次方”或者n的m次幂。
当指数为1时,通常不写出来,因为那和底的数值一样;指数为2、3时,可以读作“n的平方”、“n的立方”。
n^m的意义亦可视为1×n×n×n...︰起始值1(乘法的单位元)乘底指数这么多次。这样定义了后,很易想到如何一般化指数0和负数的情况︰任何非零数数的零次方都是1,即n^0=1(n≠0);幂的指数是负数时,即n^m=1/n^(-m),(m<0)
分数为指数的幂定义为x^m/n
=
n√x^m
幂不符合结合律和交换律。
因为十的次方很易计算,只需在后加零即可,所以科学记数法(科学计数法:将一个数字表示成
(a×10的n次幂的形式),其中1≤|a|<10,n表示整数,这种记数方法叫科学记数法。)借助此简化记录数的方式;二的次方在计算机科学中很有用。
圆幂定理
同底数幂:a^nxa^m=a^(n+m);a^n/a^m=a^(n-m)
1.同底数幂的意义
同底数幂是指底数相同的幂
积的乘方:(axb)^n=a^n×b^n;
圆幂的定义
一点P对半径R的圆O的幂定义如下:OP^2-R^2
所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。
圆幂定理是相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们推论的统称。
相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
割线定理:从圆外一点P引两条割线与圆分别交于A.B.C.D
则有
PA·PB=PC·PD。
统一归纳:过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有PA·PB=PC·PD。
进一步升华(推论):
过任意在圆O外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D。则PA·PB=PC·PD。若圆半径为r,则PC·PD=(PO-r)·(PO+r)=PO^2-r^2=|PO^2-r^2|
(一定要加绝对值,原因见下)为定值。这个值称为点P到圆O的幂。(事实上所有的过P点与圆相交的直线都满足这个值)
若点P在圆内,类似可得定值为r^2-PO^2=|PO^2-r^2|
故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差的绝对值。(这就是“圆幂”的由来)
圆的方程通常表示为x^2+y^2=r^2
1相关介绍:
幂指乘方运算的结果。n^m指将n自乘m次(根据六下课本该式意义为m个n相乘)。把n^m看作乘方的结果,叫做n的m次幂。
其中,n称为底数,m称为指数(写成上标)。当不能用上标时,例如在编程语言或电子邮件中,通常写成n^m或n**m,亦可以用低德纳箭号表示法,写成n↑m,读作“n的m次方”或者n的m次幂。
当指数为1时,通常不写出来,因为那和底的数值一样;指数为2、3时,可以读作“n的平方”、“n的立方”。
n^m的意义亦可视为1×n×n×n...︰起始值1(乘法的单位元)乘底指数这么多次。这样定义了后,很易想到如何一般化指数0和负数的情况︰除了0之外所有数的零次方都是1,即n^0=1;幂的指数是负数时,等于1/n^m。
分数为指数的幂定义为x^m/n
=
n√x^m
幂不符合结合律和交换律。
因为十的次方很易计算,只需在后加零即可,所以科学记数法(科学计数法:将一个数字表示成
(a×10的n次幂的形式),其中1≤|a|<10,n表示整数,这种记数方法叫科学记数法。)借助此简化记录数的方式;二的次方在计算机科学中很有用。
圆幂定理
同底数幂:a^nxa^m=a^(n+m);a^n/a^m=a^(n-m)
法则
1.同底数幂的意义
同底数幂是指底数相同的幂
积的乘方:(axb)^n=a^n×b^n;
圆幂的定义:
一点P对半径R的圆O的幂定义如下:OP^2-R^2
所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。
圆幂定理是相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们推论的统称。
相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
割线定理:从圆外一点P引两条割线与圆分别交于A.B.C.D
则有
PA·PB=PC·PD。
统一归纳:过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有PA·PB=PC·PD。
进一步升华(推论):
过任意在圆O外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D。则PA·PB=PC·PD。若圆半径为r,则PC·PD=(PO-r)·(PO+r)=PO^2-r^2=|PO^2-r^2|
(一定要加绝对值,原因见下)为定值。这个值称为点P到圆O的幂。(事实上所有的过P点与圆相交的直线都满足这个值)
若点P在圆内,类似可得定值为r^2-PO^2=|PO^2-r^2|
故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差的绝对值。(这就是“圆幂”的由来)
圆的方程通常表示为x^2+y^2=r^2
幂(power)指乘方运算的结果。n^m指该式意义为m个n相乘。把n^m看作乘方的结果,叫做n的m次幂。
数学中的“幂”,是“幂”这个字面意思的引申,“幂”原指盖东西布巾,数学中“幂”是乘方的结果,而乘方的表示是通过在一个数字上加上标的形式来实现的,故这就像在一个数上“盖上了一头巾”,在现实中盖头巾又有升级的意思,所以把乘方叫做幂正好契合了数学中指数级数快速增长含义,形式上也很契合,所以叫做幂。
幂不符合结合律和交换律。
因为十的次方很易计算,只需在后加零即可,所以科学记数法借助此简化记录数的方式;二的次方在计算机科学中很有用。
扩展资料:
幂的大小比较法
1、计算比较法
先通过幂的计算,然后根据结果的大小,来进行比较的。
2、底数比较法
在指数相同的情况下,通过比较底数的大小,来确定两个幂的大小。
3、指数比较法
在底数相同的情况下,通过比较指数的大小,来确定两个幂的大小。
4、求差比较法
将两个幂相减,根据其差与0的比较情况,来确定两个幂的大小。
5、求商比较法
将两个幂相除,然后通过商与1的大小关系,比较两个幂的大小。
6、乘方比较法
将两个幂乘方后化为同指数幂,通过进行比较结果,来确定两个幂的大小。
7、定值比较法
通过选一个与两个幂中一个幂相接近的幂作定值,然后用两个幂与所选取的定值相比较,由此来确定两个幂的大小。